Journal of Organometallic Chemistry, 348 (1988) 41-48 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Schwingungsspektren der Silylphosphane PSi₃Me_{9-x}(SiMe₃)_x (x = 1,...6)

K. Hassler

Institut für Anorganische Chemie der T.U. Graz (Österreich) (Eingegangen den 28. Dezember 1987)

Abstract

The infrared and Raman spectra of the silylphosphanes $(SiMe_3)_n P[SiMe_x-(SiMe_3)_{3-x}]_{3-n}$ (x, n = 0,1,2) were recorded and assigned, and a normal coordinate analysis (NCA) was carried out. The calculated SiP valence force constants are discussed and compared with the corresponding SiP coupling constants.

Zusammenfassung

Die Infrarot- und Raman-Spektren der Silylphosphane $(SiMe_3)_n P[SiMe_x-(SiMe_3)_{3-x}]_{3-n}$ (x, n = 0,1,2) wurden gemessen und mit Hilfe einer Normalkoordinatenanalyse (NCA) zugeordnet. Die berechneten SiP-Valenzkraftkonstanten werden diskutiert und mit den entsprechenden SiP-Kopplungskonstanten verglichen.

Einleitung

Über den Einfluss der Substituenten X,Y auf die SiP-Valenzkraftkonstante von Systemen des Typs X_3Si-PY_2 ist derzeit noch wenig bekannt, systematische Untersuchungen fehlen weitgehend.

Tabelle 1 gibt einen Überblick über bisher publizierte Normalkoordinatenanalysen und Kraftkonstanten, der bereits einige Rückschlüsse auf den Einfluss der Substituenten zulässt.

Tabelle 1

SiP-Valenzkraftkonstante (N/m) von Silylphosphanen

Verbindung:	P(SiH ₃) ₃	$P(SiMe_3)_3$	P(SiPh ₃) ₃	H ₂ PSiH ₃	H ₂ PSiF ₃	Me ₂ PSiCl ₃
$\overline{f(\text{SiP})}$:	185	181-190	200	204	215	215
Literatur:	[1]	[2,3]	[3]	[4]	[5]	[6]

Elektronegative Substituenten am Si-Atom erhöhen offensichtlich f(SiP) (allerdings sind die Effekte nicht so ausgeprägt wie z.B. bei den Disilanen [7]). Substitution am P-Atom dürfte ähnliches bewirken, wie ein Vergleich zwischen $P(SiH_3)_3$ und H_2PSiH_3 zeigt.

Zur Überprüfung dieser aus Tab. 1 gezogen Schlussfolgerungen erschien es interessant, den Einfluss von SiMe₃-Gruppen am Si-Atom auf die SiP-Kraftkonstante zu untersuchen. SiMe₃-Substituenten sollten wegen ihres ausgeprägten + *I*-Effektes zu einer weiteren Erniedrigung von f(SiP) führen.

Wir haben daher einige Vertreter aus der Reihe $PSi_3Me_{9-x}(SiMe_3)_x$ rein dargestellt [8]. An dieser Stelle sollen die Schwingungsspektren der Verbindungen $(SiMe_3)_2P[SiMe_x(SiMe_3)_{3-x}]$ und $P[SiMe_x(SiMe_3)_{3-x}]_3$ (x = 1,2) diskutiert werden.

Experimentelles

Die Raman-Spektren wurden mit einem Spex-Ramalog, He/Ne-Anregung (6328 Å), 50 mW registriert. Flüssige Proben wurden in 1 mm Kapillarröhrchen eindestilliert, feste als Kristallpulver vermessen. Zur Aufnahme der IR-Spektren im Bereich zwischen 250 und 4000 cm⁻¹ diente ein Perkin-Elmer 325 Spektrometer, wobei flüssige Proben als Film zwischen CsBr-Scheiben, feste als Nujolverreibung vermessen wurden.

Tabelle 2

Infrarot- und Raman-Spektren (< 900 cm⁻¹) der Trisilylphosphane $(SiMe_3)_2 P[SiMe_x(SiMe_3)_{3-x}]$ und ihre Zuordnung

$(SiMe_3)_2 PSiMe_2SiMe_3$		$(SiMe_3)_2$	PSiMe(SiMe ₂	Schwingungsform und Rasse (C_s)		
IR(1)	Ra(1)	IR(1)	R a(1)	IR(1)	Ra(1)	
860s		860vs	860w,b	860vs	860vvw,b)	, relation
835vvs	841vw,b	835vs,b	838w,b	830vs	825vvw,b	
785s		780vs	783vvw	805vs	<u> </u>	$\rho(CH_3) A', A''$
755m	755w,b	745s	743mw	740s	747mw	
					735mw	
728m	730vw				,	$\nu_{as}(SiC_2) A'$
685vs	691ms	685vs	687m	683vs	681vw	$\nu_{as}(SiC_3) A', A''$
		665sh	671sh			$\nu(SiC) A'$
650m	653vs					$\nu_{\rm s}({\rm SiC}_2) {\rm A}'$
625vs	630vs	625vs	628vs	620vs	628vs	$\nu_{\rm s}({\rm SiC}_3)$ A', A''
468vs	471w	485s	483w,b	480vs	485m \	.
455vs	459w	460vs	453w,b	450ms	441s	
				425s	420ms	$\nu(SiSi) + \nu(SiP) A', A''$
408m		398ms	383mw	390s	387vw	
367w	371vs	330m	331vs	321m	320vs)	
255mw	259w		259w		255vw)	
	235mw					
	217mw		216mw		220w	$\delta(SiC_n) A', A''$
	175vvs		167vvs		175vs	
	93m				}	

$P(SiMe_3)_3$		P[SiMe ₂ SiMe ₃] ₃		$P[SiMe(SiMe_3)_2]_3$		Schwingungsform und Rasse (C_{3v})
IR(1)	Ra(1)	IR(1)	Ra(1)	IR(s)	Ra(s)	
870sh	874w	860sh	865w	853vs)	
837vs,b	839w	835vs	835vw	830vs,b	839vw	
753m	758mw	785vs,b		780s 768s	785vw,b	$\rho(CH_3) A_1, E$
745sh				735ms	742mb	
		730vs,b	735mw		,	$\nu_{as}(SiC_2) E$
688s	690s	688vs	691s	685vs	690vs	$\nu_{as}(SiC_3) A_1, E$
				670sh	671m	ν (SiC) A ₁ , E
		652vs	659vs			$\nu_{s}(SiC_{2})A_{1}, E$
625vs	628vs	620vs	624s	621vs	628vs	$\nu_{\rm s}({\rm SiC}_3)$ A ₁ , E
459s	459mw	485s	476mw,b	490vs	489vw	
		4/0vs)	427	140	443 }	$\nu(SiSi) + \nu(SiP) A_1, E$
		200	43/m	440m	441m (
201	292	390mw	262	350s	353W	
381m	382vs,p		363Vs 343sh	310w	314vs j	
265m	271vw				257w)	
			239mw		231w	
	226s		220mw 193vs,b		217w	$\delta(\text{SiC}_n) A_1, E$
	173vvw		152vs,b		165vs,b	
	105s		97m)	

Infrarot- und Raman-Spektren (<900 cm⁻¹) der Trisilylphosphane $P[SiMe_x(SiMe_3)_{3-x}]_3$ und ihre Zuordnung

Spektren

Tab. 2 und Tab. 3 geben die gemessenen IR- und Ramanspektren der einzelnen Verbindungen im Bereich unter 900 cm⁻¹ wieder. Oberhalb liegen nur lagekonstante Übergänge wie δ_s , δ_{as} , ν_s und ν_{as} (CH₃), die auf die übrigen Gerüstschwingungen praktisch keinen Einfluss ausüben und daher aus der Diskussion ausgeklammert bleiben.

Allgemein sind die Spektren von Silylphosphanen jenen von Polysilanen sehr ähnlich, da Phosphor und Silicium nur wenig unterschiedliche Atommassen aufweisen und f(SiP) der SiSi-Valenzkraftkonstante weitgehend gleicht. Ersetzt man z.B. in einer Verbindung des Typs Y_2P -SiX₃ das Phosphoratom durch HSi, so sollten die Gerüstschwingungen des resultierenden Moleküls $Y_2HSi-SiX_3$ nur wenig gegenüber jenen des Silylphosphans verschoben sein (lediglich stärkere Änderungen bei den Bindungswinkeln sollten sich als Abweichungen bemerkbar machen).

Trägt man für die bisher bekannten Verbindungspaare die symmetrischen Gerüstschwingungen gegeneinander auf, so findet man in guter Näherung einen linearen Zusammenhang. Für alle bisher bekannten Verbindungspaare gilt aber $\nu_s(SiP) > \nu_s(SiSi)$, was auf die etwas höhere SiP-Valenzkraftkonstante (verglichen mit f(SiSi) des zugehörigen Polysilans) zurückgehen dürfte. Der in Fig. 1 angedeutete Zusammenhang ist auch dann noch recht gut erfüllt, wenn man das P-Atom

Fig. 1. Zusammenhang zwischen den symmetrischen SiSi- bzw. SiP-Valenzschwingungen (cm^{-1}) der Verbindungspaare Y_2P -SiX₃ und Y_2HSi -SiX₃ (1: P(SiMe₃)₃ und HSi(SiMe₃)₃ [3,9]; 2: Me₂PSiCl₃ und Me₃SiSiCl₃ [6,10]; 3: HP(SiMe₃)₂ und H₂Si(SiMe₃)₂ [2,11]; 4: H₂PSiMe₃ und H₃SiSiMe₃ [2,12]; 5: H₂PSiH₃ und H₃SiSiH₃ [4,13]; 6: P(SiPh₃)₃ und HSi(SiPh₃)₃ [3,12]; 7: P(SiH₃)₃ und HSi(SiH₃)₃ [1,15]; 8: Ph₂PSiPh₃ und HPh₂SiSiPh₃ [14,12].

Tabelle 4

Verteilung der SiSi- und SiP-Gerüstschwingungen auf die einzelnen Symmetrierassen

	(SiMe ₃) ₂ PSi ₂ Me ₅	$(SiMe_3)_2 PSi_3 Me_7$	(SiMe ₃) ₂ PSi ₄ Me ₉	$P(Si_2Me_5)_3$	$P(Si_3Me_7)_3$
Punktgruppe	C _s	<i>C_s</i>	<i>C</i> _s	C _{3v}	<i>C</i> _{3<i>v</i>}
I SISI	A	A' + A''	$2 \mathbf{A}' + \mathbf{A}''$	$A_1 + E$	$A_1 + A_2 + 2 E$
TSiP	2 A' + A''	2 A' + A''	2 A' + A''	$A_1 + E$	$A_1 + E$
ΓRaman	3 A' + A''	3 A' + 2 A''	4 A' + 2 A''	2 A ₁ + 2 E	2 A ₁ + 3 E
ΓIR	3 A' + A''	3 A' + 2 A''	4 A' + 2 A''	2 A ₁ + 2 E	2 A ₁ + 3 E
IR-Banden exp.	4	4	5	3	4
Ra-Linien	3	4	5	3	4

nicht durch SiH, sondern durch SiMe ersetzt, weil auch die Methylgruppe die verbleibenden Gerüstschwingungen kaum beeinflusst.

Bei den Schwingungsspektren gilt das besondere Interesse naturgemäss dem Bereich der SiP- und SiSi-Valenzschwingungen zwischen 300 und 500 cm⁻¹. Setzt man für das SiP-Gerüst allgemein die Punktgruppe (freie Drehbarkeit um SiP- und SiSi-Bindungen) höchster Symmetrie voraus und führt eine Symmetrieanalyse durch, so erhält man für die Anzahl beobachtbarer Banden dieses Bereiches das in Tab. 4 angeführte Ergebnis. Durchwegs sind alle Banden sowohl IR- als auch Raman-aktiv. Bei allen Verbindungen ist die Zahl der beobachteten Linien kleiner als von der Symmetrie verlangt, ein Hinweis auf das Vorliegen zufälliger Entartungen.

Normalkoordinatenanalyse (NCA)

Um die NCA mit einem vertretbaren Aufwand durchführen zu können, wurden alle Methylgruppen durch Massenpunkte (m = 15) ersetzt. Diese Vorgangsweise erbringt zwar generell um etwa 15-20 N/m [16] zu niedrige SiC-Valenzkraftkonstanten, doch liegt der Sinn der Arbeit nicht in der Berechnung von SiC- oder CH-Kraftkonstanten. Deswegen kann der Verlust an Genauigkeit durchaus in Kauf genommen werden, zumal die Auswirkungen auf f(SiP) unter 5% liegen dürften, wie die NCA an P(SiMe₃)₃ zeigt [3].

Die Schwingungsberechnungen wurden nach dem FG-Verfahren von Wilson [11] durchgeführt, wobei wegen fehlender Strukturdaten die Geometrien (im besonderen die SiPSi-Winkel) nur abgeschätzt werden konnten. Folgende Parameter wurden zur Aufstellung der G-Matrizen herangezogen: d(SiP) 224.8, d(SiSi) 232.0, d(SiC) 188.8 pm; < SiPSi 100°, alle übrigen Winkel 109°28'.

Das Verfahren von Wilson erfordert auch die Aufstellung der Symmetriekoordinaten, die letzten Endes die Art des verwendeten Potentialfeldes festlegen. Nach dem Prinzip des lokalen Symmetriekraftfeldes (LSFF [17]) bildeten lokale Symmetriekoordinaten der SiMe₃-, SiMe₂- und SiMe-Gruppen [18] die Basis, aus denen durch Linearkombination die Symmetriekoordinaten für die Moleküle XSiMe_n(SiMe₃)_{3-n} (X einatomig, n = 0,1,2,3) gebildet wurden. Letztere wiederum wurden zu den vollständigen Koordinaten der Trisilylphosphane linear kombiniert. Diese Vorgangsweise sichert die Übertragbarkeit ganzer Kraftkonstantenblöcke innerhalb ähnlicher Moleküle, z.B. für die SiMe(SiMe₃)₂-Gruppe von (SiMe₃)₂ PSiMe(SiMe₃)₂ und P[SiMe(SiMe₃)₂]₃.

Für die Schwingungsberechnungen konnten daher vorerst die vollständigen Kraftkonstantenblöcke von $ClSiMe_2SiMe_3$ [19] $ClSiMe(SiMe_3)_2$ [20] und $ClSi(SiMe_3)_3$ [16] direkt auf die Trisilylphosphane übertragen werden. In einem weiteren Iterationsschritt wurden sodann nur mehr SiSi- und SiP-Kraftkonstanten bis zur zufriedenstellenden Frequenzanpassung verfeinert.

Die Tabellen 5 und 6 geben die mit dem beschriebenen Kraftfeld berechneten SiC-, SiSi- und SiP-Valenzschwingungen wieder, wobei auch $P(SiMe_3)_3$ in die Berechnungen miteinbezogen wurde. Tabelle 7 schliesslich fasst die interessierenden Kraftkonstanten des PSi_n -Gerüstes zusammen. Es ist klar ersichtlich, dass die Substitution mit SiMe₃-Gruppen die SiP-Bindung schwächt, gleichzeitig aber die SiP-Kopplungskonstante [8] erhöht. Trägt man für die bisher bekannten Trisilylphosphane ¹J(SiP) gegen die Kraftkonstante f(SiP) auf (Fig. 2), so ergibt sich ein weitgehend linearer Zusammenhang (wie er auch für die CC- oder SiSi-Bindung

Tabelle 5

Rasse	Schwingung	P(SiMe	3)3	$P(Si_2Me_5)_3$		$P[SiMe(SiMe_3)_2]_3$	
		ber.	gem.	ber.	gem.	ber.	gem.
A	$\nu_{as}^1(SiC_3)$	691	690	686	691	685	690
-	$\nu_{as}^2(SiC_3)$					688	690
	$\nu(SiC)$					694	671
	$\nu_{s}(SiC_{2})$			659	659		
	$\nu_{\rm s}({\rm SiC}_3)$	622	628	609	624	612	628
	ν (SiSi)			437	437	426	441
	$\nu_s(PSi_3)$	391	382	368	363	323	314
E	$\nu_{as}^1(SiC_3)$	690	690	685	691	685	685
	$\nu_{as}^2(SiC_3)$	678	690	682	691	684	685
	$\nu(SiC)$					690	671
	$\nu_{as}(SiC_2)$			723	735		
	$\nu_{s}(SiC_{3})$	626	628	612	624	610	621
	$\nu_{as}(PSi_3)$	454	459	464	470	444	440
	$\nu^{1}(SiSi)$			400	390	363	350
	ν^2 (SiSi)					481	490

Mit C_{3v} -Symmetrie berechnete und gemessene Valenzschwingungen (cm⁻¹) der Silylphosphane P[SiMe_x(SiMe₃)_{3-x}]₃

gefunden wird [20,21]). Betrachtet man anstelle von ${}^{1}J(SiP)$ die reduzierte Kopplungskonstants K, so steigt parallel mit f(SiP) auch K(SiP) an. Die SiP-Bindung verhält sich somit qualitativ gleich wie die SiSi- oder SiC-Bindung (zumindest bei den Trisilylphosphanen).

Tabelle 6

Mit C_s -Symmetrie berechnete und gemessene Valenzschwingungen (cm⁻¹) der Silylphosphane (SiMe₃)₂P[SiMe_x(SiMe₃)_{3-x}]

Rasse	Schwingung	(SiMe ₃) ₂ PSiMe ₂ - SiMe ₃		$(SiMe_3)_2 PSiMe_3(SiMe_3)_2$		(SiMe ₃ (SiMe ₃) ₂ PSi-) ₃
		ber.	gem.	ber.	gem.	ber.	gem.
Α'	$\nu_{as}(SiC_3)^{a}$	687	685	692	685	686	683
	$\nu(SiC)$			693	671		
	$\nu_s(\text{SiC}_2)$	659	650				
	$\nu_{s}(SiC_{3})^{a}$	613	625	615	625	610	620
	$\nu_s(PSi_2)$	369	367	350	330	338	321
	v(PSi)	417	408	396	398	415	425
	v(SiSi)	470	468	460	485	465	480
	v(SiSi)					456	450
Α″	$\nu_{as}(SiC_3)^{a}$	685	685	690	685	685	683
	$\nu_{as}(SiC_2)$	734	728				
	$\nu_s(SiC_3)^a$	617	625	619	625	611	620
	$v_{as}(PSi_2)$	462	455	466)	160	433	425
	v(SiSi)			44 8)	400	407	390

^a Gemittelt über mehrere Schwingungen.

Fig. 2. Zusammenhang zwischen SiP-Kraftkonstante f und Kopplungskonstante J in Trisilylphosphanen.

Tabelle 7	
SiP- und SiSi-Valenzkraftkonstanten (N/m) der Trisilylphosphane	$PSi_3Me_x(SiMe_3)_{9-x}$

	(SiMe ₃) ₂ PSi ₂ Me ₅	$(SiMe_3)_2 PSi_3Me_7$	$(SiMe_3)_2 PSi(SiMe_3)_3$	$P(Si_2Me_5)_3$	$P(Si_3Me_7)_3$
$\overline{f(PSi(Me_3))}$	175	175	175		
$f(PSi(Si_n))$	160	145	120	160	140
f(SiSi)	165	155	135	155	155
f(SiP/SiP)	-5	-5	-5	-7	-5
f(SiP/SiSi)	5	5	5	5	5

Die Schwingungsberechnungen zeigen klar, dass oftmals SiSi- und SiP-Schwingungen miteinander stark verkoppelt sind. Die Zuordnungen in den Tab. 5 und 6 sind daher in diesem Sinne zu verstehen. Mit den Kraftkonstanten von Tab. 7 können auch die Spektren der Verbindungen $Me_3SiP(Si_2Me_5)_2$ und $Me_3SiP [SiMe(SiMe_3)_2]_2$ gut simuliert werden.

Dank

Der Autor dankt dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für die Unterstützung mit Sachmittel im Rahmen des Projektes P-5669.

Literatur

- 1 G. Davidson, E.A.V. Ebsworth, G.M. Sheldrick und L.A. Woodward, Spectrochim. Acta, 22 (1966) 67.
- 2 H. Bürger, U. Goetze und W. Sawodny, Spectrochim. Acta, 26A (1970) 671.
- 3 K. Hassler, Monatsh. Chem., 115 (1984) 713.
- 4 J.E. Drake und C. Riddle, Spectrochim. Acta, 26A (1970) 1697.
- 5 R. Demuth, Spectrochim. Acta, 31A (1975) 233.
- 6 R. Demuth, Z. Anorg. Allg. Chem., 424 (1976) 13.
- 7 E. Hengge, Monatsh. Chem., 102 (1971) 734.
- 8 K. Hassler, J. Organomet. Chem., 348 (1988) 33.
- 9 H. Bürger und W. Kilian, J. Organomet. Chem., 18 (1969) 299.
- 10 Eigene Messungen.
- 11 K. Hassler, Spectochim. Acta, 40A (1984) 775.
- 12 Eigene Messungen.
- 13 M. Pfeiffer und H.J. Spangenberg, Z. Physik Chem. (Leipzig), 232 (1966) 47.
- 14 A. Antoniadis und U. Kunze, Z. Naturforsch. B, 34 (1979) 116.
- 15 F. Höfler und R. Jannach, Inorg. Nucl. Chem. Lett., 9 (1973) 723.
- 16 H. Bürger, W. Kilian und K. Burczyk, J. Organomet. Chem., 21 (1970) 291.
- 17 T. Shimanouchi, in H. Eyring, D. Henderson, W. Jost (Hrsg.), Physical Chemistry, An Advanced Treatise, Vol. IV, Academic Press, New York, 1970.
- 18 S. Biedermann, H. Bürger, K. Hassler und F. Höfler, Monatsh. Chem., 111 (1980) 715.
- 19 K. Hassler, unveröffentlicht.
- 20 K. Hassler, Spectrochim. Acta, 41A (1985) 729.
- 21 K. Kamienska-Trela, Spectrochim. Acta, 36A, 239 (1979).